
N89 = 1 9 8 4 I
ORIGINAL PAGE IS
OF POOR QUALm

AN ARCHITECTURE FOR INTEGRATING DISTRIBUTED AND
COOPERATING KNOWLEDGE-BASED AIR FORCE DECISION AIDS

Richard 0. Nugent Richard W. Tucker
Nugent@MITRE.Arpa RWTucker@MITRE.Arpa

The MITRE Corporation
Washington C31 Artificial Intelligence Technical Center

7525 Colshire Drive
McLean. Virginia 22102

ABSTRACT

MITRE has been developing a Knowledge-Based Battle
Management Testbed for evaluating the viability of
i n t e g r a t i n g i n d e p e n d e n t l y - d e v e l o p e d k n o w l e d g e -
based decision aids in the Air Force tactical domain.

The primary goal for the testbed architecture is to
permit a new system to be added to a testbed with little
change to the system's software. Each system that
connects to the testbed network declares that it can
provide a number of services to other systems. When
a system wants to use another system's service, it does
not address the server system by name, but instead
transmits a request to the testbed network asking for
a particular service to be performed.

A key component of the testbed architecture i s a
common database which uses a relational database
management system. The RDBMS provides a database
update not i f icat ion serv ice to request ing systems.
Normally, each system is expected to monitor data
relations of interest to i t . Alternatively, a system may
broadcast an announcement message to inform other
sys tems that an event of potent ia l interest has
o c c u r r e d .

Current research is aimed at deal ing with issues
resul t ing from integrat ion efforts, such as deal ing
with potential mismatches of each system's assump-
t ions about the common da tabase , decent ra l iz ing
network control, and coordinating multiple agents.

INTRODUCTION

In tegra t ing he te rogcneous sof tware sys tems is a
burgeoning problem, par t icular ly for the mil i tary.
Many independent ly-developed systems produced for
the military are stand-alone decision aids. This paper
describes an architecture which supports thc integra-
tion of such command and control (C2) systems and
discusses the required character is t ics which cnablc
these systems to coopcra tc and share information
with each other.

MITRE'S Knowledge-Bascd Battle Managcmcnt Tcstbcci
has bccn the vehiclc for performing experimcnts in

in tegra t ing knowledge-based systems for the Rome
Air Development Center (RADC) [5]. The testbed
employs a core set of functions which provide control
m e c h a n i s m s and open connectivity support , c a l l e d
t h e k n o w l e d g e - b a s e d b a t t l e m a n a g e m e n t (K B -
B A T M A N) shell. The type of systems for which the
tes tbed i s in tended are coarse-grained, l o o s e l y -
coupled systems. A coarse-grained system has a large
amount of functionality, and a loosely-coupled system
has a high level of independence from other systems;
such a system does not require a great deal of
communica t ion wi th external agents, and can act
autonomously most of the time. A primary goal of the
testbed architecture has been to permit systems to b e
able to "plug in" dynamically and even be replaceable
by systems offering similar func t iona l i ty .

Three realistic Air Force tactical C2 systems operate in
the current testbed: a mission planner, a s i m u l a t o r ,
and an intelligence analysis system. The goal of the
testbed project has been to link these three coarse-
grained systems using the KB-BATMAN Shell and to
determine what problems must be addressed to assure
effective cooperation among them. The principal w a y
in which these three sys tems are l inked i s by
relaying outputs f rom one sys tem, such as the
in te l l igence analyst , to become inputs to another
system, such as the mission planner. This concept of
in tegra t ion seems s imple ; however , a var ic ty of
issucs are involved , s o m e of which havc been
addrcsscd during the tcstbcd project.

The principal issucs that havc been addressed include
how to control coopcration, how to permit conimonly-
used information to be used by several systcms, a n d
how to deal with dilfcrcnt views or representations of
i n fo rni a t i o n .

BACKGROUND AND PROBLEMS

R e l a t e d R e s e a r c h

I t is difficult to cvaluacc thc c f fcc t ivcncss of a
decision a id in isol;ltion from other systcins with
which i t m;iy inicract. Graham dcscrihcs ;I modcl for
representing thc interaction o f sys tems wiih their
cnv i roil i n cn I, w he re t tic cnv i ron rncnt is t hc csscnt i al
"gluc" through which t l i c systems intcrlici 141.

171

Graham views the environment as one more system to
be modeled in a distributed simulation of C2 systems.

Previous MITRE work on t h e AirLand Loosely
In tegra ted Exper t Sys t ems (ALLIES) project [11
involved integrat ing an Army planning system, an
intelligence analysis system, and a simulation system
into a s ingle cooperating environment. Since these
systems were integrated after each was developed to
operate s tand-alone, the methodology for integration
was ad hoc and communicat ions required several
different protocols .

A be t te r envi ronment f o r deve loping cooperat ing,
d i s t r i b u t e d s y s t e m s i s e s s e n t i a l t o e n c o u r a g e
modularity of system design and to provide well-
defined interfaces among systems. Teknowledge, Inc.
has been developing ABE for RADC and the Defense
Advanced Research Projects Agency (DARPA) to meet
these goals [3]. ABE was not used in the testbed project
b e c a u s e i t was s t i l l u n d e r deve lopmen t when
e v a l u a t e d .

Integrat ion of heterogeneous decis ion aids requires
addressing issues involving the fields of distributed
comput ing , da tabases , networking, and knowledge-
based systems, among others.

D i s t r i b u t e d C o n t r o l

In a n y d i s t r i b u t e d e n v i r o n m e n t , c o n t r o l of
i n t e r s y s t e m a c t i v i t i e s m a y be c e n t r a l i z e d o r
decentral ized, o r a hybrid. Centralized control is
easiest to implement, but also provides a single point
ef failure, which would not be desirable in an
operat ional system in most cases . Decentral ized
c o n t r o l r e q u i r e s fa i r ly complex a lgor i thms f o r
coordination of systems. We use centralized control in
our testbed, in part to keep the architecture simple,
and a l so to suppor t monitor ing of testbed com-
m u n i c a t i o n s .

C o m m o n F u n c t i o n a l i t y

While heterogeneous software components should he
l o o s e l y - c o u p l e d to p r e v e n t e a c h sys tem f rom
becoming highly dependent on other systems, there
still is a need for shar ing information that is not
specific to a single system. Two common systems have
been identified to f u l f i l l this requirement: a Common
Database manager and a Common Knowledge Base
manager. These two componcnts are considered to be
integral parts of the KB-BATMAN Shell, although like
other systems in the testbed, they are modules which
can be replaced without affecting other systems.

A relational database management system (RDBMS) is
used for the Common Database because the functional-
i t y of RDBMSs are fairly standard and implcmen-
tations are availahlc for a wide variety of computers.
Most properly-dcsigncd dccision aids should have an
easily ident i f iable set of database access funct ions
which may be rcplaccd with RDBMS funct ions
accessing a Common Datahasc.

Whcn a ncw systcm is hcing intcgratcd into thc
tcstbcd, i t is important to dctcrrninc how i t U S C S a

172

database. One problem is to decide which d a t a
e lements are of interest to other systems in t h e
testbed, and which data elements are for internal use
only. A second-order problem is to ascertain how to
translate data representations into a form that is most
appropr ia te for access by mult iple systems, s ince
different systems may view the same collection of d a t a
in d i f fe ren t ways. Each system's v i ew o f the
organizat ion of da ta must be t ransformed to the
Common Database's actual view. T o solve this p r o b l e m ,
the Common Database system must be able to provide
an intelligent database viewing mechanism, in which
a database request from a system may be translated to
a combination of select, join, and project o p e r a t i o n s
in order to provide the reques ted v iew. T h e
al ternat ive to providing intell igent interfaces is to
modify the internal structure of a system, which is
likely to be an undesirable option for large-scale ,
coarse-grained systems.

There a re fur ther issues resulting f r o m m u l t i p l e
access to commonly-used information. One system
may use a different method of representing s o m e
entity; for example in the testbed, one system u s e s
latitude and longitude to identify a ground location
w h e r e a s a n o t h e r s y s t e m u s e s t h e u n i v e r s a l
t ransverse Mercator coordinate sys tem. Also, one
system may be interested in greater precis ion o r
detail for some data than needed by another system.
Interpretat ion of uncertainty qualifications to data is
likely to be d i f f icu l t o r imposs ib le to cor re la te
between systems.

The Common Knowledge Base includes commonly-
needed behaviors o r functionality for the Air Force
problem domain. It can be used to reduce the
duplication of effort in component systems. It can
also be used to enforce standard operat ing procedures
as well as Air Force doctrine. Further work remains
to be done on the Common Knowledge Base, partic-
ularly for its potential role as an overall director for a
suite of ~2 systems.

I m p a c t o n Us ing E x i s t i n g S y s t e m s

An early goal of the testbed project was to address the
issue of using existing decision aid systems. It is
impractical to suggest that any existing system can be
easi ly adapted f o r in tegra t ion in to o u r tes thed
architecture. Systems which were not designed with
integrat ion in mind arc espec ia l ly l ikely to be
difficult to adapt. It may he more cost-effective and
reliable to r e implemen t a system to fit the architec-
ture than to patch existing software.

THE KB-BATMAN SHELL ARCHITECTURE

M e s s a g e P a s s i n g

Tcsthcd components communicate with each other by
scnding messages. Thrcc types of messages are used:
a requcst, a reply, and a notification. A requcst
corresponds to a the concept of remote procedure call
from distributed computing. A reply contains data in
rcsponsc to a rcqucst. A notification is an an-
nounccmcnt which docs not imply that a rcply is
c x p c c t e d .

BRiGlfJAL. PAGE %S
OF POOR QUAIPPI

A Component System

Figure 1

P r o c e s s e s

Multiple processes are involved in the KB-BATM A N
shell concept. The following types of processes are
used

- ..

in the- testbed:

The Router
(onc process)

Testbed Connection Monitor
(one process)

Routcr Interfaces (RIs)
(one per hosted system)

System Interfaces (SIs)
(one per hosted systcm)

System Executors
(one per active rcqucst execution)

Figurc 1 shows thc intcrrclat ionships among thcse
p r o c c s s e s

T h c R o u t e r s u p p o r t s c c n t r a l i z e d c o n t r o l of
communications among hosted systcms. All messagcs
pass through the Routcr. Figurc 2 depicts the star
nctwork of s y s t c m s communica t ing through the
R o u t c r .

A Routcr IntcrPacc and System Interface togcthcr
form thc communications intcrfacc bctwccn a system
and the Router. Thc intcrfacc consists of two parts
bccausc thc system may cxccutc on a different
computcr than the Routcr . A systcm's RI proccss
cxccutcs on the samc machinc as thc Routcr; the SI
process can opcratc on any computcr, but typically is
associatcd with a machinc rcprcscnling thc hostcd
system. (A hostcd systcm itself may opcratc on
multiplc computcrs) . Proccsscs on both computers
nccd IO poll for mcssagc arrival Prom ci thcr sidc.
cithcr from the systcm o r thc Routcr.

The Testbed Connection Monitor operates on the same
computer as the Router. I ts purpose is to handle
requests from systems o n other machines to connect
themselves into the testbed. The Connection Monitor
asks the Router process to create an RI for the system.
The RI and SI then will open the necessary network
connections to support message passing.

Through its SI, each system declares to the Router the
services it can perform upon request. For example,
the Common Database system advertises that it will
service database access and database update notifi-
cation requests. In addition, "declare services" is a
built-in service handled by the Router.

When a system's SI receives a request for one of its
services from another system via the Router , i t
executes tha t request by evalua t ing a func t ion
asynchronous ly in a s e p a r a t e Sys t em E x e c u t o r
process. In other words, the service request can be in
execution while the S I continues to poll for further
messagcs; in fact, multiple service requests can be in
exccution, each in a separate System Executor process.

The Router's role is to maintain a "yellow pages" of all
declarcd services. It is possible that a service can be
performed by more than one system. Whcn a system
rcqucsts an external service, its SI sends the request
to its RI which relays i t to the Router. The Router
dc tc rmines which system is most appropriate to
pcrform the service by selccting onc from the set of
all dcclared servers. (In the present implementation,
no cri teria are applied for sclect ing from mult iple
servers. Cri ter ia might include speed of response,
accuracy of response, currency of data, etc.) The
servicc requester does not address its request to a
par t icular system; in Pact, the rcqucster docs not
know what systcm, i f any, will pcrform a scrvice. It is
possiblc that a servicc is not supported, in which casc
thc Routcr scnds an error indication as a rcply to the
rcqucsicr. The Routcr currcntly docs not interpret
the contcnts of mcssagcs.

173

Communications

Hosted

Figure

A System Executor process i s created by an SI to
perform a requested service. The System Executor can
be considered to be performing the service in the
context of the SI'S system since it has access to any
functions and data of that system. System Executors
are implemented as reusable process resources on a
LISP machine, so after one completes the servicing of
a request i t becomes eligible for reuse.

Consider a s i tuat ion in which a service handl ing
system does not respond to a service request in a
timely fashion, either due to system failure or because
it is busy doing other things. The requesting system
would wait a long time or even forever unless it is
designed to monitor for replies and eventually time
out . In general , it is preferable for dis t r ibuted
systems to be da ta -dr iven , responding to changes
introduced by external sources (such as other systems
or an opera tor) , ra ther than func t ion-dr iven , in
which the system asks another system to perform a
function and then waits for a response. A data-driven
system is easier to coordinate with other systems than
a function-driven one because i t is reactive rather
than dependent . Nevertheless , funct ion-driven or
servicc-oriented systcms are necessary for a varicty
of general-purpose common funct ions that multiple
systems may need to use, such as accessing the
Common Database and using resource managers.

I n p u t Ports

Whcn a message is transmitted from one tcstbcd
process to another, i t is stored in a process' input port.
Each process other than System Executors has one
input port, and the process may read mcssagcs from
the input port in any ordcr i t chooscs. Prcscntly,
most processes read and process all messages i n a
first-in, first-out (FIFO) manncr. Ifowcvcr, a Systcm
Executor process scans thc contcnts of thc i n p u t port

2

of its currently associated SI for whichever replies it
is expecting. A System Executor does not process any
request messages, and the System Interface does not
process any reply messages. Each process which
monitors a network connection for input will copy
network input messages into ' i t s input port for
subsequent process ing .

TAC-2 APPLICATION SYSTEMS

TAC-2 is the name of thc version of the testbed which
incorporates three realistic knowledge-bascd systems
in the Air Force tactical domain: a mission planning
system. an intelligence analysis system, and a simula-
tion system. These three systems were developed by
t h r e e d i f f e r e n t g r o u p s of people a t d i f f e r e n t
locat ions. One, the planning system. was undcr
dcvelopment prior to the initiation of TAC-2. whereas
the other two were developed expressly for use with
TAC-2.

Thc planning system uscd i n TAC-2 is the Air Force
Miss ion Planning sys tcm (A M P S) , which is a
successor to the KNOBS Replanning Systcm (KRS) [2]
which in turn was a succcssor to the Knowlcdgc Bascd
Systcm (KNOBS). All of thcsc systems have been
developed by the MITRE-Bcdford Artificial Intcl-
ligence Tcchnical Ccntcr indcpcndcntly of thc TAC-2
crfort underway a1 the MITRE-Washington Artificial
Intelligcncc Technical Ccntcr. The concepts cnibod-
ied in KRS have also led to thc current dcvclopnient of
TEMPLAR for use as a opcrational systcni by the A i r
F o r c e .

AMPS was dcvclopcd as a stand-alone sysicm. and
nonc o r the AMPS soI'[warc was dcvclopcd f o r usc in
TAC-7,. t lowcvcr , one component o f AMPS, iis rel-
alional database nianagcnicnt systcm. was adapted f o r
use as part of TAC-?'s Coninion Dalabasc sysicm. A
n u m h c r o f CnhanccnicnIs wcIc mad< 10 [lie DOMS i n

174 ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

order to support simple methods for remote access and
update notification. The Common Database system is
used to manage data for all component systems in TAC-
2.

T h e in te l l igence sys tem in TAC-2, INTEL, was
developed by the same staff at MITRE-Washington that
developed TAC-2 and therefore was easiest to adapt to
the conventions required for inclusion in the TAC-2
t e s tbed .

The simulation system in TAC-2, SIMULATOR, was
developed by staff at the Rome Air Development
Center. SIMULATOR was designed to work with TAC-2,
but included some differences with the other systems
in assumptions about data. For example, SIMULATOR
assumes that location da ta is given in universal
t r ansve r se M e r c a t o r coord ina te s whereas A M P S
as sumes tha t l oca t ion da ta a re g iven a s la t i -
tude/longitude pairs . T h e transformation between
the two location representations is complex. How can
systems cooperate if they have differences like this?
An intelligent interface to the Common Database must
transparently supply the correct data to each system.

These three domain systcms cooperate by reading and
writing data to the Common Database. AMPS plans
of fens ive counter -a i r (OCA) missions automatically
based on target and other data present in the Common
Database, built-in planning constraints, and optional
user inputs. T h e Simulator simulates flying these
missions, assessing bomb damage to the targets and
loss of aircraft due to surface-to-air missiles (SAMs).
The INTEL system priorit izes targets for bombing
mis s ions .

All TAC-2 component systems and support software
are written in LISP (both Common LISP and ZETALISP)
and run on Symbolics LISP machines. INTEL and
SIMULATOR opera te in the latest version of the
operating system software, whereas AMPS executes in
an earlier version. The K B - B A T M A N shell software
and the Common Database system software operate in
both v e r s i o n s , u s i n g t h e s a m e source code .
Communica t ions be tween LISP machines employs
gener ic ne tworking sof tware , and can use ei ther
TCP/IP or Chaosnet protocols for transmission of
messages between a systcni and the K B - B A T M A N
Router. TAC-2 can operate on as many as five
computers, with each of the Router, Common Database,
AMPS, INTEL, and SIMULATOR on a scparate cornputcr;
or as few as two, with AMPS on one computcr and the
others all on another computer.

SUMMARY AND CONCLUSIONS

The KB-BATM AN Shcll architecture providcs support
for d c -
cision aids. The most important aspcct o f thc
architccture is thc emphasis on maintaining indcpcn-
dcncc of sys tems. Indcpendcnt sys tems can bc
considcrcd more managcablc and robust than systems
that rcly on o thcr sys tcms for control dircctivcs.
Indcpcndcnce is encouragcd through thc use o f
intersystem mcssagcs which arc not addrcsscd to
spcc i f ic sys tems. Ins tead , nicssagcs arc c i thcr

in tegra t ing c o a r s c - g r a i n cd know I c d gc - b a sc d

service-oriented, to be relayed by a Router to a system
which supports the service, or broadcast into the
envi ronment for all systcms to examine. A message
may be nothing more than a piece of data in a shared
Common Database, in which case system control is
totally data-driven.

Another key aspect of the architecture is the use of
in te l l igent interfaces to systems. Intelligent inter-
faces can be used to adapt data from the external
e n v i r o n m e n t (e.g., the Common Database) to be in a
form su i t ab le f o r in te rna l sys tem use. These
interfaces may need to employ knowle d g e - b a s e d
techniques fo r transforming data from a c o m m o n
rep resen ta t ion to a specialized one used within the
system. If necessary, an interface can interact with
the envi ronment and o the r sys tems in o rde r t o
support its system's needs.

Further work is required to address issue areas such
as decentralizing control away from a single Routcr
and supporting componcnt connectivit ics o ther than
a star nctwork. The Routcr nceds to be extended to
permit servers to provide qualifications for provid ing
a service, and on the other end, to permit servers to
be able to preview a request to de te rmine whcthcr i t
is intcrested in servicing it. The la t ter improvemen t
would be necessary for a totally decentralized control
mechanism such as contract nets, in which s y s t e m s
bid on service requests.

ACKNOWLEDGMENTS

This documen t was comple ted under Air Fo rce
Contract F19628-86-C-0001 in support of the Rome Air
D c v e l o p m e n t Center, Griffiss Air Force Basc, N e w
Y o r k .

REFERENCES

1. Benoit, John W. et al., AirLanrl L o o s e l y I n t e g r a t e d
Exper t Sys t ems: The ALLIES P r o j e c t , M T R - 8 6 W 0 0 0 4 1 ,
The MITRE Corporation, McLcan VA, April 1986.

2. Dawson, Brucc C., Richard H. Brown, Candace E.
K al i s h, and Stuart Go Id k i n d, K n o w 1 et lg e - Bas e d R e p l a n -
ning Sysretn, RADC-TR-87-60, Rome A i r D c v c l o p n i e n t
Ccntcr, Griffiss Air Forcc Basc NY, May 1987.

3. Erman, Lcc D., Jay S . Lark, and Frcdcrick Hayes-
Ro t h , P r o g r e s s
Repor t on A B E , TTR-ISE-86-102, Tcknowlcdgc, Inc.,
Palo Alto CA, May 1986.

4 . Graham, Richard A., A n E n v i r o n f n c r r t f o r
D i s t r i b u t e d Simulation o j Commcint l cirri1 C o n t r o 1
N e t w o r k s , Master o f Scicncc Thcsis. N a v a l Postgrad-
u;itc School, Montcrcy CA, hlarch 1983.

5. Morawski, Paul E., Richard 0. Nugcnt. and Richard
W . Tucker, T A C l : A K i r o , c , l i ' t l g : c . - R [i . ~ c , c l A i r For i , i7
Ttictic.tzl Bcl t tk Mtirr t igc~inc.nr T e s fbc t l . hl TR - 8 7 WOO I 7 1 ,
Thc MITRE Corpor;itioii. hlc.Lcan V.A. Scplcinhcr 1087.

E n g i n e e r i n g I n t e 1 1 i g e n t S y s t e m s :

1 7 5

